Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.353
1.
Langmuir ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38728666

The weak adsorption of oxygen on transition metal oxide catalysts limits the improvement of their electrocatalytic oxygen reduction reaction (ORR) performance. Herein, a dopamine-assisted method is developed to prepare Mn-doped ceria supported on nitrogen-doped carbon nanotubes (Mn-Ce-NCNTs). The morphology, dispersion of Mn-doped ceria, composition, and oxygen vacancies of the as-prepared catalysts were analyzed using various technologies. The results show that Mn-doped ceria was formed and highly dispersed on NCNTs, on which oxygen vacancies are abundant. The as-prepared Mn-Ce-NCNTs exhibit a high ORR performance, on which the average electron transfer number is 3.86 and the current density is 24.4% higher than that of commercial 20 wt % Pt/C. The peak power density of Mn-Ce-NCNTs is 68.1 mW cm-2 at the current density of 138.9 mA cm-2 for a Zn-air battery, which is close to that of 20 wt % Pt/C (69.4 mW cm-2 at 106.1 mA cm-2). Density functional theory (DFT) calculations show that the oxygen vacancy formation energies of Mn-doped CeO2(111) and pure CeO2(111) are -0.55 and 2.14 eV, respectively. Meanwhile, compared with undoped CeO2(111) (-0.02 eV), Mn-doped CeO2(111) easily adsorbs oxygen with the oxygen adsorption energy of only -0.68 eV. This work provides insights into the synergetic effect of Mn-doped ceria for facilitating oxygen adsorption and enhancing ORR performance.

2.
bioRxiv ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38746212

The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance: The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .

3.
Aging (Albany NY) ; 16(8): 6937-6953, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38643461

AIMS: This study aimed to evaluate the effects of VC on SIMI in rats. METHODS: In this study, the survival rate of high dose VC for SIMI was evaluated within 7 days. Rats were randomly assigned to three groups: Sham group, CLP group, and high dose VC (500 mg/kg i.v.) group. The animals in each group were treated with drugs for 1 day, 3 days or 5 days, respectively. Echocardiography, myocardial enzymes and HE were used to detect cardiac function. IL-1ß, IL-6, IL-10 and TNF-α) in serum were measured using ELISA kits. Western blot was used to detect proteins related to apoptosis, inflammation, autophagy, MAPK, NF-κB and PI3K/Akt/mTOR signaling pathways. RESULTS: High dose VC improved the survival rate of SIMI within 7 days. Echocardiography, HE staining and myocardial enzymes showed that high-dose VC relieved SIMI in rats in a time-dependent manner. And compared with CLP group, high-dose VC decreased the expressions of pro-apoptotic proteins, while increased the expression of anti-apoptotic protein. And compared with CLP group, high dose VC decreased phosphorylation levels of Erk1/2, P38, JNK, NF-κB and IKK α/ß in SIMI rats. High dose VC increased the expression of the protein Beclin-1 and LC3-II/LC3-I ratio, whereas decreased the expression of P62 in SIMI rats. Finally, high dose VC attenuated phosphorylation of PI3K, AKT and mTOR compared with the CLP group. SIGNIFICANCE: Our results showed that high dose VC has a good protective effect on SIMI after continuous treatment, which may be mediated by inhibiting apoptosis and inflammatory, and promoting autophagy through regulating MAPK, NF-κB and PI3K/AKT/mTOR pathway.


Apoptosis , Autophagy , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Rats, Sprague-Dawley , Sepsis , Signal Transduction , TOR Serine-Threonine Kinases , Animals , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Apoptosis/drug effects , Signal Transduction/drug effects , Autophagy/drug effects , NF-kappa B/metabolism , Male , Phosphatidylinositol 3-Kinases/metabolism , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Myocardium/metabolism , Myocardium/pathology
4.
Phytochemistry ; 222: 114100, 2024 Jun.
Article En | MEDLINE | ID: mdl-38636688

Artemyriantholides A-K (1-11) as well as 14 known compounds (12-25) were isolated from Artemisia myriantha var. pleiocephala (Asteraceae). The structures and absolute configuration of compounds 2 and 8-9 were confirmed by the single crystal X-ray diffraction analyses, and the others were elucidated by MS, NMR spectral data and electronic circular dichroism calculations. All compounds were chemically characterized as guaiane-type sesquiterpenoid dimers (GSDs). Compound 1 was the first example of the GSD fused via C-3/C-11' and C-5/C-13' linkages, and compounds 2 and 5 were rare GSDs containing chlorine atoms. Eleven compounds showed obvious inhibitory activity in HepG2, Huh7 and SK-Hep-1 cell lines by antihepatoma assay to provide the IC50 values ranging from 7.9 to 67.1 µM. Importantly, compounds 5 and 8 exhibited the best inhibitory activity with IC50 values of 14.2 and 18.8 (HepG2), 9.0 and 11.5 (Huh7), and 8.8 and 11.3 µM (SK-Hep-1), respectively. The target of compound 5 was predicted to be MAP2K2 by a computational prediction model. The interaction between compound 5 and MAP2K2 was conducted to give docking score of -9.0 kcal/mol by molecular docking and provide KD value of 43.7 µM by Surface Plasmon Resonance assay.


Artemisia , Artemisia/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes, Guaiane/pharmacology , Sesquiterpenes, Guaiane/isolation & purification , Animals , Dimerization , Molecular Docking Simulation , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Sesquiterpenes/isolation & purification , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor
5.
Nanoscale ; 16(18): 8941-8949, 2024 May 09.
Article En | MEDLINE | ID: mdl-38644794

Single-site Fe-N-C catalysts are the most promising Pt-group catalyst alternatives for the oxygen reduction reaction, but their application is impeded by their relatively low activity and unsatisfactory stability as well as production costs. Here, cobalt atoms are introduced into an Fe-N-C catalyst to enhance its catalytic activity by utilizing the synergistic effect between Fe and Co atoms. Meanwhile, phenanthroline is employed as the ligand, which favours stable pyridinic N-coordinated Fe-Co sites. The obtained catalysts exhibit excellent ORR performance with a half-wave potential of 0.892 V and good stability under alkaline conditions. In addition, the excellent ORR activity and durability of FeCo-N-C enabled the constructed zinc-air battery to exhibit a high power density of 247.93 mW cm-2 and a high capacity of 768.59 mA h gZn-1. Moreover, the AEMFC based on FeCo-N-C also achieved a high open circuit voltage (0.95 V) and rated power density (444.7 mW cm-2), surpassing those of many currently reported transition metal-based cathodes. This work emphasizes the feasibility of this non-precious metal catalyst preparation strategy and its practical applicability in fuel cells and metal-air batteries.

6.
Adv Sci (Weinh) ; : e2401780, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38666391

Creating specific noble metal/metal-organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe-MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, the optimized Ir@NiFe-MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15 mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213 mV) in 1.0 m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.

7.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 428-433, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38660847

OBJECTIVE: To summarize the clinical characteristics, therapeutic effect and prognostic factors of patients with Hodgkin's lymphoma (HL). METHODS: A total of 129 patients with HL diagnosed in Peking University Third Hospital from January 2010 to March 2021 who were given at least one efficacy assessment after treatment were enrolled, and their clinical data, including sex, age, pathological type, Ann Arbor stage, ECOG score, blood test, ß2-microglobulin, lactate dehydrogenase level, albumin level were collected. The clinical characteristics, therapeutic effect and long-term prognosis of the patients were summarized and analyzed. RESULTS: In classical HL, nodular sclerosis HL accounted for the highest proportion of 51.6%, followed by mixed cellularity HL (36.5%), lymphocyte-rich classical HL (3.2%), and lymphocyte depletion HL (0.7%), while nodular lymphocyte predominant HL accounted for 4.8%. The 3-year overall survival (OS) rate of HL patients was 89.8%, and 5-year OS was 85.0%. The 3-year progression-free survival (PFS) rate was 73.4%, and 5-year PFS was 63.1%. Multivariate regression analysis indicated that IPI score was an independent negative factor, while hemoglobin (Hb) level was an independent positive factor for OS in HL patients. When the mediastinal mass size was 9.2 cm, it was most significant to judge the survival status of HL patients. 5-year OS and 5-year PFS were 97.4% and 76.0% in early-stage HL patients without large mass, respectively, while in patients with advanced-stage HL was 83.4% and 55.9% (both P < 0.05). After 2-4 courses of treatment, the overall response rate (ORR) of patients who received chemotherapy combined with radiotherapy was 95.0%, while that was 89.6% in those with chemotherapy alone. CONCLUSIONS: The overall prognosis of patients with HL is satisfactory, especially those in early-stage without large mass. IPI score and Hb level are independent risk factors for the prognosis of HL patients. A 9.2 cm mediastinal mass can be used as the cut-off value for the prognosis of Chinese HL patients.


Hodgkin Disease , Humans , Hodgkin Disease/therapy , Adult , Male , Prognosis , Female , Survival Rate , Young Adult
8.
Cancer Res Treat ; 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38637966

Purpose: In this study, we evaluated 66 patients diagnosed with adenoid cystic carcinoma (ACC) enrolled in two Korean Cancer Study Group trials to investigate the response and progression patterns in recurrent and/or metastatic ACC treated with vascular endothelial growth factor receptor tyrosine kinase inhibitors (VEGFR-TKIs). Materials and Methods: We evaluated 66 patients diagnosed with ACC who were enrolled in the Korean Cancer Study Group trials. The tumor measurements, clinical data, treatment outcomes, and progression patterns of therapy were analyzed. Results: In the 66 patients (53 receiving axitinib and 13 receiving nintedanib), the disease control rate was 61%, and 3 patients achieved partial response. The median follow-up, median progression-free survival (PFS), overall survival, and 6-month PFS rate were 27.6, 12.4, and 18.1 months and 62.1%, respectively. Among 42 patients who experienced progression, 27 (64.3%) showed target lesion progression. Bone metastasis was an independent poor prognostic factor. Conclusion: Overall, most patients demonstrated stable disease with prolonged PFS; however, prominent target lesion progression occurred in some patients. Thus, PFS may capture VEGFR-TKI efficacy better than the objective response rate.

9.
Nanoscale ; 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38639199

Dual-atom site catalysts (DASCs) have sparked considerable interest in heterogeneous photocatalysis as they possess the advantages of excellent photoelectronic activity, photostability, and high carrier separation efficiency and mobility. The DASCs involved in these important photocatalytic processes, especially in the photocatalytic hydrogen evolution reaction (HER), CO2 reduction reaction (CO2RR), N2/nitrate reduction, etc., have been extensively investigated in the past few years. In this review, we highlight the recent progress in DASCs that provides fundamental insights into the photocatalytic conversion of small molecules. The controllable preparation and characterization methods of various DASCs are discussed. Subsequently, the reaction mechanisms of the formation of several important molecules (hydrogen, hydrocarbons and ammonia) on DASCs are introduced in detail, in order to probe the relationship between DASCs's structure and photocatalytic activity. Finally, some challenges and outlooks of DASCs in the photocatalytic conversion of small molecules are summarized and prospected. We hope that this review can provide guidance for in-depth understanding and aid in the design of efficient DASCs for photocatalysis.

10.
Front Vet Sci ; 11: 1374430, 2024.
Article En | MEDLINE | ID: mdl-38681855

N6-methyladenosine (m6A) methylation is an internal post-transcriptional modification that has been linked to viral multiplication and pathogenicity. To elucidate the conservation patterns of potential 5'-DRACH-3' motifs in avian leukosis virus subgroup J (ALV-J), 149 ALV-J strains (139 isolates from China; ALV-J prototype HPRS-103 from the UK; and 9 strains from the USA, Russia, India, and Pakistan) available in GenBank before December 2023 were retrieved. According to the prediction results of the SRAMP web-server, these ALV-J genomes contained potential DRACH motifs, with the total number ranging from 43 to 64, which were not determined based on the isolation region and time. Conservative analysis suggested that 37 motifs exhibited a conservation of >80%, including 17 motifs with a grading above "high confidence." Although these motifs were distributed in the U5 region of LTRs and major coding regions, they were enriched in the coding regions of p27, p68, p32, and gp85. The most common m6A-motif sequence of the DRACH motif in the ALV-J genome was GGACU. The RNA secondary structure of each conserved motif predicted by SRAMP and RNAstructure web-server was mainly of two types-A-U pair (21/37) and hairpin loop (16/37)-based on the core adenosine. Considering the systematic comparative analysis performed in this study, future thorough biochemical research is warranted to determine the role of m6A modification during the replication and infection of ALV-J. These conservation and distribution analysis of the DRACH motif for potential m6A sites in ALV-J would provide a foundation for the future intervention of ALV-J infection and m6A modification.

11.
Pharmaceutics ; 16(4)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38675217

Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production.

12.
Vet Q ; 44(1): 1-8, 2024 Dec.
Article En | MEDLINE | ID: mdl-38595267

Gyrovirus galga1 (GyVg1), a member of the Anelloviridae family and Gyrovirus genus, has been detected in chicken and human tissue samples. In this study, the DNA of GyVg1-related gyroviruses in the sera of six dogs and three cats from Central and Eastern China was identified using PCR. Alignment analysis between the nine obtained and reference GyVg1 strains revealed that the genome identity ranged from 99.20% (DOG03 and DOG04 strains) to 96.17% (DOG01 and DOG06 strains). Six recombination events were predicted in multiple strains, including DOG01, DOG05, DOG06, CAT01, CAT02, and CAT03. The predicted major and minor parents of DOG05 came from Brazil. The DOG06 strain is potentially recombined from strains originating from humans and cats, whereas DOG01 is potentially recombined from G17 (ferret-originated) and Ave3 (chicken-originated), indicating that transmissions across species and regions may occur. Sixteen representative amino acid mutation sites were identified: nine in VP1 (12 R/H, 114S/N, 123I/M, 167 L/P, 231 P/S, 237 P/L, 243 R/W, 335 T/A, and 444S/N), four in VP2 (81 A/P, 103 R/H, 223 R/G, and 228 A/T), and three in VP3 (38 M/I, 61 A/T, and 65 V/A). These mutations were only harbored in strains identified in dogs and cats in this study. Whether this is related to host tropism needs further investigation. In this study, GyVg1 was identified in the sera of dogs and cats, and the molecular characteristics prompted the attention of public health.


Cat Diseases , Dog Diseases , Gyrovirus , Animals , Cats , Dogs , Humans , Ferrets , Gyrovirus/genetics , Chickens , Phylogeny
13.
Poult Sci ; 103(6): 103671, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38569240

N6-methyladenosine (m6A) methylation in transcripts has been suggested to influence tumorigenesis in liver tumors caused by the avian leukosis virus subgroup J (ALV-J). However, m6A modifications during ALV-J infection in vitro remain unclear. Herein, we performed m6A and RNA sequencing in ALV-J-infected chicken fibroblasts (DF-1). A total of 51 differentially expressed genes containing differentially methylated peaks were identified, which were markedly enriched in microRNAs (miRNAs) in cancer cells as well as apoptosis, mitophagy and autophagy, RNA degradation, and Hippo and MAPK signaling pathways. Correlation analysis indicated that YTHDC1 (m6A-reader gene) plays a key role in m6A modulation during ALV-J infection. The env gene of ALV-J harbored the strongest peak, and untranslated regions and long terminal repeats also contained peaks of different degrees. To the best of our knowledge, this is the first thorough analysis of m6A patterns in ALV-J-infected DF-1 cells. Combined with miRNA profiles, this study provides a useful basis for future research into the key pathways of ALV-J infection associated with m6A alteration.

14.
Fitoterapia ; 175: 105909, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38479615

Artemdubosides A-E (1-5), the first examples of natural polyacetylenes substituted by 6'-O-crotonyl ß-glucopyranoside, and artemdubosides F-G (6-7) that were two unusual polyacetylenes featuring a 6'-O-acetyl ß-glucopyranoside moiety, were isolated from Artemisia dubia var. subdigitata. Their structures were elucidated based on the spectral data including HRESIMS, UV, IR, 1D and 2D NMR, and ECD calculations. Antihepatoma assay suggested that compound 1 exhibited activity against HepG2, Huh7, and SK-Hep-1 cells with inhibitory ratios of 77.1%, 90.8%, and 73.1% at 200.0 µM, respectively.

15.
Nanoscale ; 16(13): 6669-6679, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38483277

Perovskite p-n homojunctions (PHJ) have been confirmed to play a crucial role in facilitating carrier separation/extraction in the perovskite absorption layer and provide an additional built-in potential, which benefits the inhibition of carrier recombination in perovskite solar cells (PSCs) and ultimately improves device performance. However, the diffusion and migration of ions between n-type and p-type perovskite films, particularly under operational and heating conditions, lead to the degradation of PHJ structures and limit the long-term stability of PSCs with PHJ structure (denoted as PHJ-PSCs). In this study, we propose an insert layer strategy by directly introducing an ultra-thin polyetheramine (PEA) layer between the n-type and p-type perovskite films to address those challenges arising from ion movements. Femtosecond transient absorption (fs-TAS) and photoluminescence (PL) measurements demonstrate that the PHJ (without and with the insert layer) enhances carrier separation/extraction compared to the single n-type perovskite film. Monitoring the evolution of bromine element distribution reveals that the insert layer can efficiently suppress ion diffusion between perovskite films, even under long-term illumination and heating conditions. Consequently, an efficiency of 23.53% with excellent long-term operational stability is achieved in the optimized PHJ-PSC with the insert layer.

16.
Molecules ; 29(6)2024 Mar 08.
Article En | MEDLINE | ID: mdl-38542854

This paper developed a method for preparing ultrasound-responsive microgels based on reversible addition fragmentation chain transfer-hetero Diels-Alder (RAFT-HAD) dynamic covalent bonding. First, a styrene cross-linked network was successfully prepared by a Diels-Alder (DA) reaction between phosphoryl dithioester and furan using double-ended diethoxyphosphoryl dithiocarbonate (BDEPDF) for RAFT reagent-mediated styrene (St) polymerization, with a double-ended dienophile linker and copolymer of furfuryl methacrylate (FMA) and St as the dienophile. Subsequently, the microgel system was constructed by the HDA reaction between phosphoryl disulfide and furan groups using the copolymer of polyethylene glycol monomethyl ether acrylate (OEGMA) and FMA as the dienophore building block and hydrophilic segment and the polystyrene pro-dienophile linker as the cross-linker and hydrophobic segment. The number of furans in the dienophile chain and the length of the dienophile linker were regulated by RAFT polymerization to investigate the effects of the single-molecule chain functional group degree, furan/dithioester ratio, and hydrophobic cross-linker length on the microgel system. The prepared microgels can achieve the reversible transformation of materials under force responsiveness, and their preparation steps are simple and adaptive to various potential applications in biomedical materials and adaptive electrical materials.

17.
Bioorg Med Chem Lett ; 104: 129708, 2024 May 15.
Article En | MEDLINE | ID: mdl-38521176

Guaianolide dimers represent a unique class of natural products with anticancer activities, but their low content in plants has limited in-depth pharmacological studies. Lavandiolide I is a guaianolide dimer isolated from Artemisia species, and had been synthesized on a ten-gram scale in four steps with 60 % overall yield, which showed potent antihepatoma activity on the HepG2, Huh7, and SK-Hep-1 cell lines with IC50 values of 12.1, 18.4, and 17.6 µM, respectively. To explore more active dimers, 33 lavandiolide I derivatives were designed, synthesized, and evaluated for their inhibitory activity on human hepatoma cell lines. Among them, 10 derivatives were more active than lavandiolide I and sorafenib on the three cell lines. The primary structure-activity relationship concluded that the introduction of aldehyde, ester, azide, amide, carbamate and urea functional groups at C-14' of the guaianolide dimer significantly enhanced the antihepatoma activity. Among these compounds, derivatives 25, 27, and 33 enhanced antihepatoma activity more than 1.2-5.8 folds than that of lavandiolide I, and demonstrated low toxicity to the human liver cell lines (THLE-2) and good safety profiles with selective index ranging from 1.3 to 3.4, while lavandiolide I was more toxic to THLE-2 cells. This work provides new insights into enhancing the antihepatoma efficacy and reducing the toxicity of sesquiterpenoid dimers.


Antineoplastic Agents , Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Structure-Activity Relationship , Carcinoma, Hepatocellular/drug therapy , Cell Line , Liver Neoplasms/drug therapy , Molecular Structure , Cell Proliferation
18.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Article En | MEDLINE | ID: mdl-38513075

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

19.
Front Immunol ; 15: 1326026, 2024.
Article En | MEDLINE | ID: mdl-38426107

Background: For IgA nephropathy (IgAN), tubular atrophy/interstitial fibrosis is the most important prognostic pathological indicator in the mesangial and endocapillary hypercellularity, segmental sclerosis, interstitial fibrosis/tubular atrophy, and presence of crescents (MEST-C) score. The identification of non-invasive biomarkers for tubular atrophy/interstitial fibrosis would aid clinical monitoring of IgAN progression and improve patient prognosis. Methods: The study included 188 patients with primary IgAN in separate confirmation and validation cohorts. The associations of miR-92a-3p, miR-425-5p, and miR-185-5p with renal histopathological lesions and prognosis were explored using Spearman correlation analysis and Kaplan-Meier survival curves. Bioinformatics analysis and dual luciferase experiments were used to identify hub genes for miR-185-5p. The fibrotic phenotypes of tubular epithelial cells were evaluated in vivo and in HK-2 cells. Results: miRNA sequencing and cohort validation revealed that the expression levels of miR-92a-3p, miR-425-5p, and miR-185-5p in urine were significantly increased among patients with IgAN; these levels could predict the extent of tubular atrophy/interstitial fibrosis in such patients. The combination of the three biomarkers resulted in an area under the receiver operating characteristic curve of 0.742. The renal prognosis was significantly worse in the miR-185-5p high expression group than in the low expression group (P=0.003). Renal tissue in situ hybridization, bioinformatics analysis, and dual luciferase experiments confirmed that miR-185-5p affects prognosis in patients with IgAN mainly by influencing expression of the target gene tight junction protein 1 (TJP1) in renal tubular epithelial cells. In vitro experiment revealed that an miR-185-5p mimic could reduce TJP1 expression in HK-2 cells, while increasing the levels of α-smooth muscle actin, fibronectin, collagen I, and collagen III; these changes promoted the transformation of renal tubular epithelial cells to a fibrotic phenotype. An miR-185-5p inhibitor can reverse the fibrotic phenotype in renal tubular epithelial cells. In a unilateral ureteral obstruction model, the inhibition of miR-185-5p expression alleviated tubular atrophy/interstitial fibrosis. Conclusion: Urinary miR-185-5p, a non-invasive biomarker of tubular atrophy/interstitial fibrosis in IgAN, may promote the transformation of renal tubular epithelial cells to a fibrotic phenotype via TJP1.


Glomerulonephritis, IGA , MicroRNAs , Humans , Glomerulonephritis, IGA/pathology , Biomarkers/urine , Fibrosis , MicroRNAs/metabolism , Atrophy , Collagen , Luciferases
20.
Sci Rep ; 14(1): 5307, 2024 03 04.
Article En | MEDLINE | ID: mdl-38438438

This study introduces PDMotion, a mobile application comprising 11 digital tests, including those adapted from the MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) Part III and novel assessments, for remote Parkinson's Disease (PD) motor symptoms evaluation. Employing machine learning techniques on data from 50 PD patients and 29 healthy controls, PDMotion achieves accuracies of 0.878 for PD status prediction and 0.715 for severity assessment. A post-hoc explanation model is employed to assess the importance of features and tasks in diagnosis and severity evaluation. Notably, novel tasks that are not adapted from MDS-UPDRS Part III like the circle drawing, coordination test, and alternative tapping test are found to be highly important, suggesting digital assessments for PD can go beyond digitizing existing tests. The alternative tapping test emerges as the most significant task. Using its features alone achieves prediction accuracies comparable to the full task set, underscoring its potential as an independent screening tool. This study addresses a notable research gap by digitalizing a wide array of tests, including novel ones, and conducting a comparative analysis of their feature and task importance. These insights provide guidance for task selection and future development in PD mobile assessments, a field previously lacking such comparative studies.


Mobile Applications , Parkinson Disease , Humans , Parkinson Disease/diagnosis , Machine Learning , Mental Status and Dementia Tests , Paracentesis
...